Controlling growth of activations in the residual stream(01:17:37 - 01:19:50) - Let's reproduce GPT-2 (124M)

Controlling growth of activations in the residual stream(01:17:37 - 01:19:50)
Let's reproduce GPT-2 (124M)

We reproduce the GPT-2 (124M) from scratch. This video covers the whole process: First we build the GPT-2 network, then we optimize its training to be really fast, then we set up the training run following the GPT-2 and GPT-3 paper and their hyperparameters, then we hit run, and come back the nex...
We reproduce the GPT-2 (124M) from scratch. This video covers the whole process: First we build the GPT-2 network, then we optimize its training to be really fast, then we set up the training run following the GPT-2 and GPT-3 paper and their hyperparameters, then we hit run, and come back the next morning to see our results, and enjoy some amusing model generations. Keep in mind that in some places this video builds on the knowledge from earlier videos in the Zero to Hero Playlist (see my channel). You could also see this video as building my nanoGPT repo, which by the end is about 90% similar.

Links:
- build-nanogpt GitHub repo, with all the changes in this video as individual commits: https://github.com/karpathy/build-nanogpt
- nanoGPT repo: https://github.com/karpathy/nanoGPT
- llm.c repo: https://github.com/karpathy/llm.c
- my website: https://karpathy.ai
- my twitter:
- our Discord channel: https://discord.gg/3zy8kqD9Cp

Supplementary links:
- Attention is All You Need paper: https://arxiv.org/abs/1706.03762
- OpenAI GPT-3 paper: https://arxiv.org/abs/2005.14165 - OpenAI GPT-2 paper: https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf- The GPU I'm training the model on is from Lambda GPU Cloud, I think the best and easiest way to spin up an on-demand GPU instance in the cloud that you can ssh to: https://lambdalabs.com

Chapters:
00:00:00 intro: Let’s reproduce GPT-2 (124M)
00:03:39 exploring the GPT-2 (124M) OpenAI checkpoint
00:13:47 SECTION 1: implementing the GPT-2 nn.Module
00:28:08 loading the huggingface/GPT-2 parameters
00:31:00 implementing the forward pass to get logits
00:33:31 sampling init, prefix tokens, tokenization
00:37:02 sampling loop
00:41:47 sample, auto-detect the device
00:45:50 let’s train: data batches (B,T) → logits (B,T,C)
00:52:53 cross entropy loss
00:56:42 optimization loop: overfit a single batch
01:02:00 data loader lite
01:06:14 parameter sharing wte and lm_head
01:13:47 model initialization: std 0.02, residual init
01:22:18 SECTION 2: Let’s make it fast. GPUs, mixed precision, 1000ms
01:28:14 Tensor Cores, timing the code, TF32 precision, 333ms
01:39:38 float16, gradient scalers, bfloat16, 300ms
01:48:15 torch.compile, Python overhead, kernel fusion, 130ms
02:00:18 flash attention, 96ms
02:06:54 nice/ugly numbers. vocab size 50257 → 50304, 93ms
02:14:55 SECTION 3: hyperpamaters, AdamW, gradient clipping
02:21:06 learning rate scheduler: warmup + cosine decay
02:26:21 batch size schedule, weight decay, FusedAdamW, 90ms
02:34:09 gradient accumulation
02:46:52 distributed data parallel (DDP)
03:10:21 datasets used in GPT-2, GPT-3, FineWeb (EDU)
03:23:10 validation data split, validation loss, sampling revive
03:28:23 evaluation: HellaSwag, starting the run
03:43:05 SECTION 4: results in the morning! GPT-2, GPT-3 repro
03:56:21 shoutout to llm.c, equivalent but faster code in raw C/CUDA
03:59:39 summary, phew, build-nanogpt github repo

Corrections:
I will post all errata and followups to the build-nanogpt GitHub repo (link above)

SuperThanks:
I experimentally enabled them on my channel yesterday. Totally optional and only use if rich. All revenue goes to to supporting my work in AI + Education.

#neural network #GPT #karpathy #LLM #language model #large language model #ChatGPT #NVIDIA #GPU #PyTorch #Python #deep learning #education
intro: Let’s reproduce GPT-2 (124M) - Let's reproduce GPT-2 (124M)

intro: Let’s reproduce GPT-2 (124M)

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:00:00 - 00:03:39
* *** Exploring the Target:* The video starts by loading the pre-trained GPT-2 (124M) model from Hugging Face Transformers and examining its weights and architecture. - Let's reproduce GPT-2 (124M)

* *** Exploring the Target:* The video starts by loading the pre-trained GPT-2 (124M) model from Hugging Face Transformers and examining its weights and architecture.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
00:00:00 - 00:13:47
-  🤖 Reproducing GPT-2 124M model- Reproducing the GPT-2 model involves understanding its release structure and model variations. - Let's reproduce GPT-2 (124M)

- 🤖 Reproducing GPT-2 124M model- Reproducing the GPT-2 model involves understanding its release structure and model variations.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:00:00 - 00:01:09
M) model, including its state dictionary and tensor shapes. We learn how the model's vocabulary size and embedding dimensions are represented within these tensors. (- - Let's reproduce GPT-2 (124M)

M) model, including its state dictionary and tensor shapes. We learn how the model's vocabulary size and embedding dimensions are represented within these tensors. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:00:00 - 00:04:00
Reproducing the GPT-2 124M version - Let's reproduce GPT-2 (124M)

Reproducing the GPT-2 124M version

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:00:02 - 00:02:06
-  💻 Model Parameters Overview- GPT-2 miniseries comprises models of various sizes, with the 124 million parameter model being a significant variant.- Model parameters dictate its size, layer count, and channel dimensions, affecting downstream task performance. - Let's reproduce GPT-2 (124M)

- 💻 Model Parameters Overview- GPT-2 miniseries comprises models of various sizes, with the 124 million parameter model being a significant variant.- Model parameters dictate its size, layer count, and channel dimensions, affecting downstream task performance.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:01:09 - 00:02:06
-  💰 Reproducibility and Cost- Reproducing the GPT-2 124M model is now more accessible and affordable due to advances in hardware and cloud computing.- Achieving comparable model performance can be done in a relatively short time and at a reasonable cost. - Let's reproduce GPT-2 (124M)

- 💰 Reproducibility and Cost- Reproducing the GPT-2 124M model is now more accessible and affordable due to advances in hardware and cloud computing.- Achieving comparable model performance can be done in a relatively short time and at a reasonable cost.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:02:06 - 00:03:18
Validation loss measures model's performance on unseen data. - Let's reproduce GPT-2 (124M)

Validation loss measures model's performance on unseen data.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:02:06 - 00:06:21
-  📚 Reference Material- Access to GPT-2 weights facilitates reproduction, but additional references like the GPT-3 paper provide crucial details for optimization and training settings.- Combining insights from both GPT-2 and GPT-3 papers enhances reproducibility and understanding of the model architecture. - Let's reproduce GPT-2 (124M)

- 📚 Reference Material- Access to GPT-2 weights facilitates reproduction, but additional references like the GPT-3 paper provide crucial details for optimization and training settings.- Combining insights from both GPT-2 and GPT-3 papers enhances reproducibility and understanding of the model architecture.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:03:18 - 00:05:37
exploring the GPT-2 (124M) OpenAI checkpoint - Let's reproduce GPT-2 (124M)

exploring the GPT-2 (124M) OpenAI checkpoint

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:03:39 - 00:13:47
@ now... so far so good... - Let's reproduce GPT-2 (124M)

@ now... so far so good...

Let's reproduce GPT-2 (124M)
2024年06月10日  @ShravanKumar147 様 
00:03:43 - 04:01:26
compared to the original Transformer are explored, such as the removal of the encoder and cross-attention mechanism. Further, modifications to layer normalization placement and the addition of a final layer normalization layer are highlighted. (- - Let's reproduce GPT-2 (124M)

compared to the original Transformer are explored, such as the removal of the encoder and cross-attention mechanism. Further, modifications to layer normalization placement and the addition of a final layer normalization layer are highlighted. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:04:00 - 00:08:00
-  🧠 Understanding Model Structure- Exploring the structure of the GPT-2 model involves inspecting token and positional embeddings, as well as layer weights.- The visualization of embeddings and weights reveals insights into the model's learning process and representation. - Let's reproduce GPT-2 (124M)

- 🧠 Understanding Model Structure- Exploring the structure of the GPT-2 model involves inspecting token and positional embeddings, as well as layer weights.- The visualization of embeddings and weights reveals insights into the model's learning process and representation.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:05:37 - 00:13:13
GPT-2 token and position embeddings explained - Let's reproduce GPT-2 (124M)

GPT-2 token and position embeddings explained

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:06:21 - 00:08:43
, aligning it with the schema used by Hugging Face Transformers. This skeleton includes modules for token and positional embeddings, Transformer blocks, final layer normalization, and the language model head. (- - Let's reproduce GPT-2 (124M)

, aligning it with the schema used by Hugging Face Transformers. This skeleton includes modules for token and positional embeddings, Transformer blocks, final layer normalization, and the language model head. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:08:00 - 00:12:00
Understanding token positions and embeddings in GPT-2 (124M) - Let's reproduce GPT-2 (124M)

Understanding token positions and embeddings in GPT-2 (124M)

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:08:43 - 00:12:54
has the freedom to learn the position embeddings (the original transformer paper hardcoded the positional embeddings) - Let's reproduce GPT-2 (124M)

has the freedom to learn the position embeddings (the original transformer paper hardcoded the positional embeddings)

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
00:08:49 - 00:18:14
is discussed. (- - Let's reproduce GPT-2 (124M)

is discussed. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:12:00 - 00:16:00
Implementing and understanding GPT-2 (124M) model architecture. - Let's reproduce GPT-2 (124M)

Implementing and understanding GPT-2 (124M) model architecture.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:12:54 - 00:15:02
-  🛠 Implementing Model Architecture- Developing a custom GPT-2 model involves constructing the model architecture, including token and position embeddings, transformer blocks, and classification layers.- Aligning the custom implementation with existing frameworks like Hugging Face Transformers aids in loading pre-trained weights and ensures compatibility. - Let's reproduce GPT-2 (124M)

- 🛠 Implementing Model Architecture- Developing a custom GPT-2 model involves constructing the model architecture, including token and position embeddings, transformer blocks, and classification layers.- Aligning the custom implementation with existing frameworks like Hugging Face Transformers aids in loading pre-trained weights and ensures compatibility.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:13:13 - 00:14:21
SECTION 1: implementing the GPT-2 nn.Module - Let's reproduce GPT-2 (124M)

SECTION 1: implementing the GPT-2 nn.Module

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:13:47 - 00:28:08
* *** Implementing the GPT-2 nn.Module:* A custom GPT-2 class is built in PyTorch, mirroring the Hugging Face architecture and loading the pre-trained weights for verification. - Let's reproduce GPT-2 (124M)

* *** Implementing the GPT-2 nn.Module:* A custom GPT-2 class is built in PyTorch, mirroring the Hugging Face architecture and loading the pre-trained weights for verification.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
00:13:47 - 00:31:00
-  🔍 Model Architecture Differences- GPT-2's architecture includes modifications like layer normalization adjustments and additional layer normalization in the final self-attention block compared to the original Transformer.- Understanding architectural differences is crucial for accurately implementing and reproducing the GPT-2 model. - Let's reproduce GPT-2 (124M)

- 🔍 Model Architecture Differences- GPT-2's architecture includes modifications like layer normalization adjustments and additional layer normalization in the final self-attention block compared to the original Transformer.- Understanding architectural differences is crucial for accurately implementing and reproducing the GPT-2 model.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:14:21 - 00:15:15
Creating a matching schema for loading weights easily. - Let's reproduce GPT-2 (124M)

Creating a matching schema for loading weights easily.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:15:02 - 00:19:20
-  🏗 Defining Model Blocks- Designing the transformer block involves structuring the forward pass, incorporating attention mechanisms, feedforward networks, and residual connections.- Optimizing the block structure for efficient information flow and gradient propagation is essential for model performance. - Let's reproduce GPT-2 (124M)

- 🏗 Defining Model Blocks- Designing the transformer block involves structuring the forward pass, incorporating attention mechanisms, feedforward networks, and residual connections.- Optimizing the block structure for efficient information flow and gradient propagation is essential for model performance.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:15:15 - 00:20:20
's implementation through tensor manipulation and its algorithmic similarity to previous implementations. (- - Let's reproduce GPT-2 (124M)

's implementation through tensor manipulation and its algorithmic similarity to previous implementations. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:16:00 - 00:20:00
You want a direct residual connection from the target to the input embeddings, skipping layer normalization (I need to understand what layer normalization is) - Let's reproduce GPT-2 (124M)

You want a direct residual connection from the target to the input embeddings, skipping layer normalization (I need to understand what layer normalization is)

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
00:18:14 - 00:22:11
Found this video first, then at about  when you started talking about residuals and micrograd, went back to your zero-to-hero series and watched everything as a prerequisite. now i understand how residuals helps in stabilizing the training. the gradient distribution into branches analogy really changed the perspective for me. this video should be kept safe in a time capsule - Let's reproduce GPT-2 (124M)

Found this video first, then at about when you started talking about residuals and micrograd, went back to your zero-to-hero series and watched everything as a prerequisite. now i understand how residuals helps in stabilizing the training. the gradient distribution into branches analogy really changed the perspective for me. this video should be kept safe in a time capsule

Let's reproduce GPT-2 (124M)
2024年06月10日  @ananthdev2388 様 
00:19:00 - 04:01:26
The Transformer involves repeated application of map and reduce - Let's reproduce GPT-2 (124M)

The Transformer involves repeated application of map and reduce

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:19:20 - 00:21:22
Implementing the Forward Pass and Text Generation: The forward pass of the network is implemented, outlining how input token indices are processed to produce logits for predicting the next token in a sequence. This sets the stage for generating text from the model. (- - Let's reproduce GPT-2 (124M)

Implementing the Forward Pass and Text Generation: The forward pass of the network is implemented, outlining how input token indices are processed to produce logits for predicting the next token in a sequence. This sets the stage for generating text from the model. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:20:00 - 00:24:00
Its funny how his description of attention as reduce-map description at  can be thought of as map-reduce :) - Let's reproduce GPT-2 (124M)

Its funny how his description of attention as reduce-map description at can be thought of as map-reduce :)

Let's reproduce GPT-2 (124M)
2024年06月10日  @bicepjai 様 
00:20:00 - 04:01:26
the comparison between attention and mlp is impressive - Let's reproduce GPT-2 (124M)

the comparison between attention and mlp is impressive

Let's reproduce GPT-2 (124M)
2024年06月10日  @changxinhe438 様 
00:20:10 - 04:01:26
-  🧠 Understanding the Transformer Architecture- The Transformer architecture relies on attention mechanisms and multi-layer perceptrons (MLPs).- Attention is crucial for communication and individual information processing within Transformer blocks.- Transformers utilize repeated application of "map" and "reduce" operations for information exchange and refinement. - Let's reproduce GPT-2 (124M)

- 🧠 Understanding the Transformer Architecture- The Transformer architecture relies on attention mechanisms and multi-layer perceptrons (MLPs).- Attention is crucial for communication and individual information processing within Transformer blocks.- Transformers utilize repeated application of "map" and "reduce" operations for information exchange and refinement.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:20:20 - 00:21:00
-  🛠 Implementing the MLP Block- The MLP block consists of linear projections sandwiched between G nonlinearity.- The G nonlinearity resembles a smoother version of ReLU and contributes to better gradient flow.- Historical reasons and empirical evidence support the use of the approximate G nonlinearity in GPT-2 reproduction. - Let's reproduce GPT-2 (124M)

- 🛠 Implementing the MLP Block- The MLP block consists of linear projections sandwiched between G nonlinearity.- The G nonlinearity resembles a smoother version of ReLU and contributes to better gradient flow.- Historical reasons and empirical evidence support the use of the approximate G nonlinearity in GPT-2 reproduction.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:21:00 - 00:23:41
GPT-2 used the 10h approximate version of G instead of the exact version. - Let's reproduce GPT-2 (124M)

GPT-2 used the 10h approximate version of G instead of the exact version.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:21:22 - 00:25:09
Activation function GELU is an approximation - Let's reproduce GPT-2 (124M)

Activation function GELU is an approximation

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
00:22:11 - 00:55:27
-  🧩 Exploring the Attention Operation- Multi-headed attention in Transformers involves parallel computation of attention heads.- The attention operation remains algorithmically equivalent to previous implementations but is more efficient in PyTorch.- Careful variable naming facilitates seamless weight transfer from existing models during reproduction. - Let's reproduce GPT-2 (124M)

- 🧩 Exploring the Attention Operation- Multi-headed attention in Transformers involves parallel computation of attention heads.- The attention operation remains algorithmically equivalent to previous implementations but is more efficient in PyTorch.- Careful variable naming facilitates seamless weight transfer from existing models during reproduction.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:23:41 - 00:40:21
model. This involves tokenizing a prefix string, moving the model to a CUDA device for GPU acceleration, and performing sampling-based text generation. (- - Let's reproduce GPT-2 (124M)

model. This involves tokenizing a prefix string, moving the model to a CUDA device for GPU acceleration, and performing sampling-based text generation. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:24:00 - 00:28:00
GPT-2 (124M) implementation details - Let's reproduce GPT-2 (124M)

GPT-2 (124M) implementation details

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:25:09 - 00:27:08
Efficient implementation in PyTorch for GPT-2 (124M) model - Let's reproduce GPT-2 (124M)

Efficient implementation in PyTorch for GPT-2 (124M) model

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:27:08 - 00:30:59
Introducing the Tiny Shakespeare Dataset: This part introduces the Tiny Shakespeare dataset as a small and manageable dataset for initial model training and debugging. Basic statistics of the dataset are explored. (- - Let's reproduce GPT-2 (124M)

Introducing the Tiny Shakespeare Dataset: This part introduces the Tiny Shakespeare dataset as a small and manageable dataset for initial model training and debugging. Basic statistics of the dataset are explored. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:28:00 - 00:32:00
loading the huggingface/GPT-2 parameters - Let's reproduce GPT-2 (124M)

loading the huggingface/GPT-2 parameters

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:28:08 - 00:31:00
This series is amazing, but I have a bit of confusion. At the  timestamp, you mentioned that the weights are transposed and referenced something about TensorFlow. However, I think in PyTorch, the weights for a linear layer are initialized as torch.empty(out_features, in_features)so is this the case u needed to transpose the weightsand Furthermore, the weights you are transposing all belong to linear layers, yet for the last lm_head layer, which is also a linear layer, you are not transposing that weight.Am I mistaken here, or is there something else going on? - Let's reproduce GPT-2 (124M)

This series is amazing, but I have a bit of confusion. At the timestamp, you mentioned that the weights are transposed and referenced something about TensorFlow. However, I think in PyTorch, the weights for a linear layer are initialized as torch.empty(out_features, in_features)so is this the case u needed to transpose the weightsand Furthermore, the weights you are transposing all belong to linear layers, yet for the last lm_head layer, which is also a linear layer, you are not transposing that weight.Am I mistaken here, or is there something else going on?

Let's reproduce GPT-2 (124M)
2024年06月10日  @musey-kn15ws 様 
00:30:10 - 04:01:26
Forwarding the GPT-2 model requires processing token indices and embeddings. - Let's reproduce GPT-2 (124M)

Forwarding the GPT-2 model requires processing token indices and embeddings.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:30:59 - 00:32:52
implementing the forward pass to get logits - Let's reproduce GPT-2 (124M)

implementing the forward pass to get logits

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:31:00 - 00:33:31
* *** Forward Pass and Sampling:* The forward pass is implemented to calculate logits, and a sampling loop is added to generate text from the model. - Let's reproduce GPT-2 (124M)

* *** Forward Pass and Sampling:* The forward pass is implemented to calculate logits, and a sampling loop is added to generate text from the model.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
00:31:00 - 01:22:18
model. It introduces the concept of batching and creating input-target pairs for loss calculation. (- - Let's reproduce GPT-2 (124M)

model. It introduces the concept of batching and creating input-target pairs for loss calculation. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:32:00 - 00:36:00
Explaining the forward pass of the GPT-2 network - Let's reproduce GPT-2 (124M)

Explaining the forward pass of the GPT-2 network

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:32:52 - 00:36:36
sampling init, prefix tokens, tokenization - Let's reproduce GPT-2 (124M)

sampling init, prefix tokens, tokenization

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:33:31 - 00:37:02
Creating a Simple Data Loader: This section refactors the code to create a simple data loader object responsible for loading tokenized data from the Tiny Shakespeare dataset and generating batches suitable for training the model. (- - Let's reproduce GPT-2 (124M)

Creating a Simple Data Loader: This section refactors the code to create a simple data loader object responsible for loading tokenized data from the Tiny Shakespeare dataset and generating batches suitable for training the model. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:36:00 - 00:40:00
Generating logits and probabilities for token prediction - Let's reproduce GPT-2 (124M)

Generating logits and probabilities for token prediction

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:36:36 - 00:38:34
sampling loop - Let's reproduce GPT-2 (124M)

sampling loop

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:37:02 - 00:41:47
(time ) - Let's reproduce GPT-2 (124M)

(time )

Let's reproduce GPT-2 (124M)
2024年06月10日  @pravingaikwad1337 様 
00:37:46 - 04:01:26
why do we only  keep the last column of the logits? - Let's reproduce GPT-2 (124M)

why do we only keep the last column of the logits?

Let's reproduce GPT-2 (124M)
2024年06月10日  @garyz904 様 
00:38:10 - 04:01:26
Using top K by default (50) helps keep the model on track - Let's reproduce GPT-2 (124M)

Using top K by default (50) helps keep the model on track

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:38:34 - 00:42:24
Calculating Loss and Backpropagation: The forward function is adjusted to return not just the logits but also the calculated loss based on provided target tokens. Cross-entropy loss is used, and the initial loss is sanity-checked to ensure reasonable starting probabilities. (- - Let's reproduce GPT-2 (124M)

Calculating Loss and Backpropagation: The forward function is adjusted to return not just the logits but also the calculated loss based on provided target tokens. Cross-entropy loss is used, and the initial loss is sanity-checked to ensure reasonable starting probabilities. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:40:00 - 00:44:00
-  🤖 Replicating GPT-2 Model Initialization- Replicating the GPT-2 model initialization process.- Transitioning from pre-trained weights to initializing from random numbers.- Exploring the straightforward process of using a random model in PyTorch. - Let's reproduce GPT-2 (124M)

- 🤖 Replicating GPT-2 Model Initialization- Replicating the GPT-2 model initialization process.- Transitioning from pre-trained weights to initializing from random numbers.- Exploring the straightforward process of using a random model in PyTorch.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:40:21 - 00:43:30
sample, auto-detect the device - Let's reproduce GPT-2 (124M)

sample, auto-detect the device

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:41:47 - 00:45:50
: My quick summary at ! A 2000-line GPT-2 implementation in Huggingface has been condensed to almost 100 lines. The weights from HF GPT-2 were replicated in this new version, using the same sampling parameters, seed, and generating identical output. A notable improvement is the restructuring of the implementation, where all heads are now integrated within a single matrix, applying some neat matrix transposes while maintaining parallelism and enhancing comprehension. This is far easier to understand compared to many other complicated multihead implementations I've seen. The next step involves training this model from the ground up. - Let's reproduce GPT-2 (124M)

: My quick summary at ! A 2000-line GPT-2 implementation in Huggingface has been condensed to almost 100 lines. The weights from HF GPT-2 were replicated in this new version, using the same sampling parameters, seed, and generating identical output. A notable improvement is the restructuring of the implementation, where all heads are now integrated within a single matrix, applying some neat matrix transposes while maintaining parallelism and enhancing comprehension. This is far easier to understand compared to many other complicated multihead implementations I've seen. The next step involves training this model from the ground up.

Let's reproduce GPT-2 (124M)
2024年06月10日  @unclecode 様 
00:42:00 - 04:01:26
Using GPT-2 (124M) for model initialization - Let's reproduce GPT-2 (124M)

Using GPT-2 (124M) for model initialization

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:42:24 - 00:44:17
-  🔍 Detecting and Utilizing Device in PyTorch- Automatically detecting and utilizing available devices in PyTorch.- Strategies for choosing the highest compute-capable device.- Facilitating code compatibility across different hardware configurations. - Let's reproduce GPT-2 (124M)

- 🔍 Detecting and Utilizing Device in PyTorch- Automatically detecting and utilizing available devices in PyTorch.- Strategies for choosing the highest compute-capable device.- Facilitating code compatibility across different hardware configurations.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:43:30 - 00:46:11
Implementing Optimization with AdamW: This section introduces the AdamW optimizer as an alternative to stochastic gradient descent (SGD), highlighting its advantages for language model training. The optimization loop is implemented, including gradient accumulation and loss printing. (- - Let's reproduce GPT-2 (124M)

Implementing Optimization with AdamW: This section introduces the AdamW optimizer as an alternative to stochastic gradient descent (SGD), highlighting its advantages for language model training. The optimization loop is implemented, including gradient accumulation and loss printing. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:44:00 - 00:48:00
Initializing model on correct device is crucial for performance - Let's reproduce GPT-2 (124M)

Initializing model on correct device is crucial for performance

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:44:17 - 00:48:08
let’s train: data batches (B,T) → logits (B,T,C) - Let's reproduce GPT-2 (124M)

let’s train: data batches (B,T) → logits (B,T,C)

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:45:50 - 00:52:53
-  📄 Preparing and Tokenizing Dataset- Introduction to the Tiny Shakespeare dataset for training.- Obtaining and processing the dataset for tokenization.- Initial exploration and preprocessing steps for training data. - Let's reproduce GPT-2 (124M)

- 📄 Preparing and Tokenizing Dataset- Introduction to the Tiny Shakespeare dataset for training.- Obtaining and processing the dataset for tokenization.- Initial exploration and preprocessing steps for training data.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:46:11 - 00:52:05
Understanding and Addressing Device Mismatches: This part emphasizes the importance of ensuring all tensors and model components reside on the same device (CPU or GPU) to avoid errors during training. A bug related to tensor device mismatch is identified and corrected. (- - Let's reproduce GPT-2 (124M)

Understanding and Addressing Device Mismatches: This part emphasizes the importance of ensuring all tensors and model components reside on the same device (CPU or GPU) to avoid errors during training. A bug related to tensor device mismatch is identified and corrected. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:48:00 - 00:52:00
Transforming single sequence into batch with structured tokens - Let's reproduce GPT-2 (124M)

Transforming single sequence into batch with structured tokens

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:48:08 - 00:50:03
Creating input and labels for Transformer - Let's reproduce GPT-2 (124M)

Creating input and labels for Transformer

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:50:03 - 00:54:02
model based on the original paper's guidelines. This includes using specific standard deviations for different layer types and scaling residual connections to control activation growth. (- - Let's reproduce GPT-2 (124M)

model based on the original paper's guidelines. This includes using specific standard deviations for different layer types and scaling residual connections to control activation growth. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:52:00 - 00:56:00
--  🛠 Implementing Data Loader and Loss Calculation- Building a data loader to feed token sequences into the Transformer model.- Setting up the forward pass to calculate the loss function.- Establishing a structured approach for loss calculation and gradient updates. - Let's reproduce GPT-2 (124M)

-- 🛠 Implementing Data Loader and Loss Calculation- Building a data loader to feed token sequences into the Transformer model.- Setting up the forward pass to calculate the loss function.- Establishing a structured approach for loss calculation and gradient updates.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:52:05 - 00:56:53
cross entropy loss - Let's reproduce GPT-2 (124M)

cross entropy loss

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:52:53 - 00:56:42
Flattening multi-dimensional tensors for cross entropy calculation. - Let's reproduce GPT-2 (124M)

Flattening multi-dimensional tensors for cross entropy calculation.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:54:02 - 00:56:04
Calculating the estimated loss at initialization - Let's reproduce GPT-2 (124M)

Calculating the estimated loss at initialization

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
00:55:27 - 00:57:00
GPU, focusing on its theoretical performance limits in terms of Teraflops for different floating-point precisions. The importance of memory bandwidth limitations is also discussed. (- - Let's reproduce GPT-2 (124M)

GPU, focusing on its theoretical performance limits in terms of Teraflops for different floating-point precisions. The importance of memory bandwidth limitations is also discussed. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
00:56:00 - 01:00:00
The loss at initialization is expected to be around 10.82 but is seen around 11, which suggests a diffused probability distribution at initialization. - Let's reproduce GPT-2 (124M)

The loss at initialization is expected to be around 10.82 but is seen around 11, which suggests a diffused probability distribution at initialization.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:56:04 - 01:00:00
Fun Fact: -ln(1/50257) = 10.82 but simply ln(50257) also gives the same answer. - Let's reproduce GPT-2 (124M)

Fun Fact: -ln(1/50257) = 10.82 but simply ln(50257) also gives the same answer.

Let's reproduce GPT-2 (124M)
2024年06月10日  @serenalovescoding 様 
00:56:10 - 04:01:26
optimization loop: overfit a single batch - Let's reproduce GPT-2 (124M)

optimization loop: overfit a single batch

Let's reproduce GPT-2 (124M)
2024年06月10日 
00:56:42 - 01:02:00
Question regarding overfitting a single batch . - Let's reproduce GPT-2 (124M)

Question regarding overfitting a single batch .

Let's reproduce GPT-2 (124M)
2024年06月10日  @pavanpreetgandhi6763 様 
00:56:42 - 04:01:26
-  🧮 Optimizing Model Parameters with AdamW- Implementing optimization using the AdamW optimizer.- Understanding the role and benefits of AdamW compared to SGD.- Executing gradient updates and monitoring loss during the optimization process. - Let's reproduce GPT-2 (124M)

- 🧮 Optimizing Model Parameters with AdamW- Implementing optimization using the AdamW optimizer.- Understanding the role and benefits of AdamW compared to SGD.- Executing gradient updates and monitoring loss during the optimization process.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
00:56:53 - 01:00:17
Pytorch library had bugs that the canonical version (e.g. Adam) is the buggy version (fixed in AdamW) - Let's reproduce GPT-2 (124M)

Pytorch library had bugs that the canonical version (e.g. Adam) is the buggy version (fixed in AdamW)

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
00:57:00 - 01:01:01
, are introduced as ways to trade precision for significant speed improvements. (- - Let's reproduce GPT-2 (124M)

, are introduced as ways to trade precision for significant speed improvements. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:00:00 - 01:04:00
Explaining the device issue and fixing tensor moving bug. - Let's reproduce GPT-2 (124M)

Explaining the device issue and fixing tensor moving bug.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:00:00 - 01:01:52
-  🧠 Introduction to Model Optimization- Optimizing model training requires careful handling of tensors and device placement.- Overfitting a single batch is an initial step in understanding model behavior.- Transitioning from overfitting a single batch to optimizing with multiple batches requires implementing a data loader. - Let's reproduce GPT-2 (124M)

- 🧠 Introduction to Model Optimization- Optimizing model training requires careful handling of tensors and device placement.- Overfitting a single batch is an initial step in understanding model behavior.- Transitioning from overfitting a single batch to optimizing with multiple batches requires implementing a data loader.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:00:17 - 01:02:03
Attempting to overfit on a single example - Let's reproduce GPT-2 (124M)

Attempting to overfit on a single example

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
01:01:01 - 01:12:53
Creating a simple data loader for iterating through batches of data. - Let's reproduce GPT-2 (124M)

Creating a simple data loader for iterating through batches of data.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:01:52 - 01:05:46
data loader lite - Let's reproduce GPT-2 (124M)

data loader lite

Let's reproduce GPT-2 (124M)
2024年06月10日 
01:02:00 - 01:06:14
-  📊 Implementation of a Simple Data Loader- The data loader reads text files and tokenizes them for model input.- It divides the data into batches, ensuring smooth iteration over the dataset.- Basic functionality covers chunking data and managing batch transitions. - Let's reproduce GPT-2 (124M)

- 📊 Implementation of a Simple Data Loader- The data loader reads text files and tokenizes them for model input.- It divides the data into batches, ensuring smooth iteration over the dataset.- Basic functionality covers chunking data and managing batch transitions.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:02:03 - 01:06:24
I see at  for the batch processing, you are marching along by an index of `B * T`. Instead, what would be the implications of changing this to a sliding window (+1 indexing) such that we get overlapping samples? I realise this would create `len(self.tokens) - block_size` samples leading to a far greater number of batches per epoch, is this the only aspect? - Let's reproduce GPT-2 (124M)

I see at for the batch processing, you are marching along by an index of `B * T`. Instead, what would be the implications of changing this to a sliding window (+1 indexing) such that we get overlapping samples? I realise this would create `len(self.tokens) - block_size` samples leading to a far greater number of batches per epoch, is this the only aspect?

Let's reproduce GPT-2 (124M)
2024年06月10日  @anw_g01 様 
01:02:16 - 04:01:26
precision in PyTorch to leverage tensor cores and achieve a substantial speedup in training without noticeable accuracy degradation. (- - Let's reproduce GPT-2 (124M)

precision in PyTorch to leverage tensor cores and achieve a substantial speedup in training without noticeable accuracy degradation. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:04:00 - 01:08:00
Bug in GPT-2 training process - Let's reproduce GPT-2 (124M)

Bug in GPT-2 training process

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:05:46 - 01:07:46
parameter sharing wte and lm_head - Let's reproduce GPT-2 (124M)

parameter sharing wte and lm_head

Let's reproduce GPT-2 (124M)
2024年06月10日 
01:06:14 - 01:13:47
-  🐛 Fixing a Weight Initialization Bug- Identifies a bug in weight initialization concerning weight tying in GPT-2 training.- Explains the significance of weight tying in reducing parameters and improving performance.- Implements a fix by redirecting pointers to the same tensor, saving parameters and optimizing performance. - Let's reproduce GPT-2 (124M)

- 🐛 Fixing a Weight Initialization Bug- Identifies a bug in weight initialization concerning weight tying in GPT-2 training.- Explains the significance of weight tying in reducing parameters and improving performance.- Implements a fix by redirecting pointers to the same tensor, saving parameters and optimizing performance.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:06:24 - 01:13:45
Common weight tying scheme in Transformer models - Let's reproduce GPT-2 (124M)

Common weight tying scheme in Transformer models

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:07:46 - 01:11:41
Further Optimization with Torch Compile and Kernel Fusion: The torch.compile function is introduced as a powerful optimization technique that can analyze and fuse multiple operations into single kernels, reducing memory bandwidth bottlenecks and increasing throughput. (- - Let's reproduce GPT-2 (124M)

Further Optimization with Torch Compile and Kernel Fusion: The torch.compile function is introduced as a powerful optimization technique that can analyze and fuse multiple operations into single kernels, reducing memory bandwidth bottlenecks and increasing throughput. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:08:00 - 01:12:00
source code (at ) but I can't seem to find it in your PyTorch implementation. - Let's reproduce GPT-2 (124M)

source code (at ) but I can't seem to find it in your PyTorch implementation.

Let's reproduce GPT-2 (124M)
2024年06月10日  @MM31-i6f 様 
01:11:13 - 04:01:26
the weights sharing the dimensions of wte and lm head are different, is it okay? - Let's reproduce GPT-2 (124M)

the weights sharing the dimensions of wte and lm head are different, is it okay?

Let's reproduce GPT-2 (124M)
2024年06月10日  @mehul4mak 様 
01:11:32 - 04:01:26
Weight sharing scheme reduces parameters and improves efficiency - Let's reproduce GPT-2 (124M)

Weight sharing scheme reduces parameters and improves efficiency

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:11:41 - 01:13:45
Identifying Performance Bottlenecks: "Nice" vs. "Ugly" Numbers: This section highlights a less obvious optimization technique: ensuring that key parameters like vocabulary size and batch size are "nice" numbers with many powers of two. This helps align computations with CUDA's block-based execution model and avoids inefficient boundary cases. (- - Let's reproduce GPT-2 (124M)

Identifying Performance Bottlenecks: "Nice" vs. "Ugly" Numbers: This section highlights a less obvious optimization technique: ensuring that key parameters like vocabulary size and batch size are "nice" numbers with many powers of two. This helps align computations with CUDA's block-based execution model and avoids inefficient boundary cases. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:12:00 - 01:16:00
% of the parameters) - Let's reproduce GPT-2 (124M)

% of the parameters)

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
01:12:53 - 01:23:50
-  🎚 Fine-tuning Model Initialization- Discusses the importance of model weight initialization in training stability and performance.- Mimics GPT-2 initialization scheme based on observed patterns in released source code.- Introduces a scaling factor for residual layers' weights initialization to control activation growth in the network. - Let's reproduce GPT-2 (124M)

- 🎚 Fine-tuning Model Initialization- Discusses the importance of model weight initialization in training stability and performance.- Mimics GPT-2 initialization scheme based on observed patterns in released source code.- Introduces a scaling factor for residual layers' weights initialization to control activation growth in the network.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:13:45 - 01:20:27
Follow GPT-2 initialization scheme for better model performance - Let's reproduce GPT-2 (124M)

Follow GPT-2 initialization scheme for better model performance

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:13:45 - 01:17:37
model initialization: std 0.02, residual init - Let's reproduce GPT-2 (124M)

model initialization: std 0.02, residual init

Let's reproduce GPT-2 (124M)
2024年06月10日 
01:13:47 - 01:22:18
: Summary at - Let's reproduce GPT-2 (124M)

: Summary at

Let's reproduce GPT-2 (124M)
2024年06月10日  @unclecode 様 
01:14:00 - 04:01:26
Adjusting Vocabulary Size for Optimal Performance: This part demonstrates how a slight increase in vocabulary size to the nearest power of two can surprisingly lead to a performance boost due to more efficient CUDA kernel execution. (- - Let's reproduce GPT-2 (124M)

Adjusting Vocabulary Size for Optimal Performance: This part demonstrates how a slight increase in vocabulary size to the nearest power of two can surprisingly lead to a performance boost due to more efficient CUDA kernel execution. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:16:00 - 01:20:00
shouldn't Embedding std be set to 0.01 ? - Let's reproduce GPT-2 (124M)

shouldn't Embedding std be set to 0.01 ?

Let's reproduce GPT-2 (124M)
2024年06月10日  @MrEmbrance 様 
01:16:03 - 04:01:26
Controlling growth of activations in the residual stream - Let's reproduce GPT-2 (124M)

Controlling growth of activations in the residual stream

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:17:37 - 01:19:50
Setting flags and scaling standard deviation in GPT-2 model initialization. - Let's reproduce GPT-2 (124M)

Setting flags and scaling standard deviation in GPT-2 model initialization.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:19:50 - 01:23:53
Implementing Gradient Accumulation for Large Batch Sizes: This section introduces gradient accumulation as a technique to simulate very large batch sizes that wouldn't fit in GPU memory by accumulating gradients over multiple micro-batches before performing a weight update. (- - Let's reproduce GPT-2 (124M)

Implementing Gradient Accumulation for Large Batch Sizes: This section introduces gradient accumulation as a technique to simulate very large batch sizes that wouldn't fit in GPU memory by accumulating gradients over multiple micro-batches before performing a weight update. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:20:00 - 01:24:00
Hi Andrej  should we skip the pos embedding initialization with std 0.01 like in the original code and stick to the 0.02 ? - Let's reproduce GPT-2 (124M)

Hi Andrej should we skip the pos embedding initialization with std 0.01 like in the original code and stick to the 0.02 ?

Let's reproduce GPT-2 (124M)
2024年06月10日  @sh4ny1 様 
01:20:21 - 04:01:26
-  🛠 Implementing GPT-2 Initialization- Implementing scaling down the standard deviation for proper initialization.- Clarification on the two times number of layers in the Transformer.- Setting seeds for reproducibility and initializing GPT-2 model. - Let's reproduce GPT-2 (124M)

- 🛠 Implementing GPT-2 Initialization- Implementing scaling down the standard deviation for proper initialization.- Clarification on the two times number of layers in the Transformer.- Setting seeds for reproducibility and initializing GPT-2 model.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:20:27 - 01:23:07
SECTION 2: Let’s make it fast. GPUs, mixed precision, 1000ms - Let's reproduce GPT-2 (124M)

SECTION 2: Let’s make it fast. GPUs, mixed precision, 1000ms

Let's reproduce GPT-2 (124M)
2024年06月10日 
01:22:18 - 01:28:14
* *** Understanding Hardware:* The video emphasizes understanding GPU capabilities, particularly tensor cores and memory bandwidth. - Let's reproduce GPT-2 (124M)

* *** Understanding Hardware:* The video emphasizes understanding GPU capabilities, particularly tensor cores and memory bandwidth.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
01:22:18 - 01:28:14
-  💻 Optimizing Hardware Utilization- Assessing available hardware resources, including GPUs.- Understanding the importance of memory bandwidth in GPU utilization.- Exploring precision options (float32, tf32, bfloat16) for performance optimization. - Let's reproduce GPT-2 (124M)

- 💻 Optimizing Hardware Utilization- Assessing available hardware resources, including GPUs.- Understanding the importance of memory bandwidth in GPU utilization.- Exploring precision options (float32, tf32, bfloat16) for performance optimization.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:23:07 - 01:28:12
import code; code.interact(local=locals()) - Let's reproduce GPT-2 (124M)

import code; code.interact(local=locals())

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
01:23:50 - 01:51:59
Deep learning training can achieve higher performance by using lower precision formats. - Let's reproduce GPT-2 (124M)

Deep learning training can achieve higher performance by using lower precision formats.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:23:53 - 01:25:55
Utilizing Multiple GPUs with Distributed Data Parallelism: This part introduces the concept of distributed data parallelism (DDP) to utilize multiple GPUs for training. It explains how to launch multiple processes with torchrun, assign processes to specific GPUs, and synchronize gradients across processes. (- - Let's reproduce GPT-2 (124M)

Utilizing Multiple GPUs with Distributed Data Parallelism: This part introduces the concept of distributed data parallelism (DDP) to utilize multiple GPUs for training. It explains how to launch multiple processes with torchrun, assign processes to specific GPUs, and synchronize gradients across processes. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:24:00 - 01:28:00
Importance of using floating points over int8 for neural network training. - Let's reproduce GPT-2 (124M)

Importance of using floating points over int8 for neural network training.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:25:55 - 01:29:49
model. The data loading script and its functionalities for downloading, tokenizing, and sharding the dataset are briefly explained. (- - Let's reproduce GPT-2 (124M)

model. The data loading script and its functionalities for downloading, tokenizing, and sharding the dataset are briefly explained. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:28:00 - 01:32:00
-  🔄 Leveraging Tensor Cores for Acceleration- Explanation of tensor cores and their role in matrix multiplication.- Introduction to tf32 precision and its performance benefits.- Comparison of tf32 and float32 performance improvements. - Let's reproduce GPT-2 (124M)

- 🔄 Leveraging Tensor Cores for Acceleration- Explanation of tensor cores and their role in matrix multiplication.- Introduction to tf32 precision and its performance benefits.- Comparison of tf32 and float32 performance improvements.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:28:12 - 01:37:04
Tensor Cores, timing the code, TF32 precision, 333ms - Let's reproduce GPT-2 (124M)

Tensor Cores, timing the code, TF32 precision, 333ms

Let's reproduce GPT-2 (124M)
2024年06月10日 
01:28:14 - 01:39:38
* *** Mixed Precision (TF32):* Enabling TF32 precision for matrix multiplications provides a free 3x speedup with minimal accuracy loss. - Let's reproduce GPT-2 (124M)

* *** Mixed Precision (TF32):* Enabling TF32 precision for matrix multiplications provides a free 3x speedup with minimal accuracy loss.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
01:28:14 - 01:39:38
Matrix multiplication is accelerated through tensor cores. - Let's reproduce GPT-2 (124M)

Matrix multiplication is accelerated through tensor cores.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:29:49 - 01:32:01
Adjusting Training Script for Fine Web EDU: The training script is modified to accommodate the Fine Web EDU dataset, including changes to the data loader, training loop, and hyperparameter settings. The concept of warming up the learning rate and its importance in training large language models is discussed. (- - Let's reproduce GPT-2 (124M)

Adjusting Training Script for Fine Web EDU: The training script is modified to accommodate the Fine Web EDU dataset, including changes to the data loader, training loop, and hyperparameter settings. The concept of warming up the learning rate and its importance in training large language models is discussed. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:32:00 - 01:36:00
Using tf32 for 8X faster performance with minor precision tradeoff. - Let's reproduce GPT-2 (124M)

Using tf32 for 8X faster performance with minor precision tradeoff.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:32:01 - 01:35:49
Max out the batch size and use numbers with powers of two for better efficiency. - Let's reproduce GPT-2 (124M)

Max out the batch size and use numbers with powers of two for better efficiency.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:35:49 - 01:37:45
model on HSWAG are outlined. (- - Let's reproduce GPT-2 (124M)

model on HSWAG are outlined. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:36:00 - 01:40:00
@ Should the tokens/second throughput be x2 given we use both X and y (targets) for training? Or are we just looking at the batch size here? Also would using x.numel() or y.numel() be equivalent? - Let's reproduce GPT-2 (124M)

@ Should the tokens/second throughput be x2 given we use both X and y (targets) for training? Or are we just looking at the batch size here? Also would using x.numel() or y.numel() be equivalent?

Let's reproduce GPT-2 (124M)
2024年06月10日  @anw_g01 様 
01:36:27 - 04:01:26
-  ⚙ Implementing tf32 Precision in PyTorch- Enabling tf32 precision in PyTorch with a single line of code.- Observing throughput improvements with tf32 precision.- Understanding the trade-offs and limitations of tf32 precision. - Let's reproduce GPT-2 (124M)

- ⚙ Implementing tf32 Precision in PyTorch- Enabling tf32 precision in PyTorch with a single line of code.- Observing throughput improvements with tf32 precision.- Understanding the trade-offs and limitations of tf32 precision.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:37:04 - 01:40:30
TF32 promises 8X throughput but only delivers 3X due to memory bottlenecks - Let's reproduce GPT-2 (124M)

TF32 promises 8X throughput but only delivers 3X due to memory bottlenecks

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:37:45 - 01:41:50
float16, gradient scalers, bfloat16, 300ms - Let's reproduce GPT-2 (124M)

float16, gradient scalers, bfloat16, 300ms

Let's reproduce GPT-2 (124M)
2024年06月10日 
01:39:38 - 01:48:15
* *** Mixed Precision (BFloat16):* Switching to BFloat16 for activations further improves speed, requiring minimal code changes thanks to PyTorch AutoCast. - Let's reproduce GPT-2 (124M)

* *** Mixed Precision (BFloat16):* Switching to BFloat16 for activations further improves speed, requiring minimal code changes thanks to PyTorch AutoCast.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
01:39:38 - 01:48:15
model. The importance of a validation set in monitoring overfitting is reiterated. (- - Let's reproduce GPT-2 (124M)

model. The importance of a validation set in monitoring overfitting is reiterated. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:40:00 - 01:44:00
-  📊 B Float16 vs. FP16 Precision Reduction- Understanding B Float16 precision reduction compared to FP16.- B Float16 maintains the same exponent range but truncates the mantissa, resulting in reduced precision within the range.- Unlike FP16, B Float16 does not alter the range of representable numbers, simplifying training processes by eliminating the need for gradient scalers. - Let's reproduce GPT-2 (124M)

- 📊 B Float16 vs. FP16 Precision Reduction- Understanding B Float16 precision reduction compared to FP16.- B Float16 maintains the same exponent range but truncates the mantissa, resulting in reduced precision within the range.- Unlike FP16, B Float16 does not alter the range of representable numbers, simplifying training processes by eliminating the need for gradient scalers.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:40:30 - 01:42:24
Transition from fp16 to bf16 for simpler training. - Let's reproduce GPT-2 (124M)

Transition from fp16 to bf16 for simpler training.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:41:50 - 01:43:50
-  🧮 Implementing Mixed Precision in PyTorch- Utilizing PyTorch's torch.AutoCast for mixed precision training.- Guidance on using torch.AutoCast to surround the forward pass and loss calculation in the model.- Highlighting the minimal code changes required to implement B Float16 training in PyTorch. - Let's reproduce GPT-2 (124M)

- 🧮 Implementing Mixed Precision in PyTorch- Utilizing PyTorch's torch.AutoCast for mixed precision training.- Guidance on using torch.AutoCast to surround the forward pass and loss calculation in the model.- Highlighting the minimal code changes required to implement B Float16 training in PyTorch.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:42:24 - 01:48:29
Implementing B float 16 for minimal impact on model activations. - Let's reproduce GPT-2 (124M)

Implementing B float 16 for minimal impact on model activations.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:43:50 - 01:48:05
training for further performance optimization. (- - Let's reproduce GPT-2 (124M)

training for further performance optimization. (-

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:44:00 - 01:48:00
) - Let's reproduce GPT-2 (124M)

)

Let's reproduce GPT-2 (124M)
2024年06月10日  @UnicornLaunching 様 
01:48:00 - 04:01:26
Introducing torch.compile for faster model compilation - Let's reproduce GPT-2 (124M)

Introducing torch.compile for faster model compilation

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:48:05 - 01:49:59
torch.compile, Python overhead, kernel fusion, 130ms - Let's reproduce GPT-2 (124M)

torch.compile, Python overhead, kernel fusion, 130ms

Let's reproduce GPT-2 (124M)
2024年06月10日 
01:48:15 - 02:00:18
* *** Torch.Compile:* Compiling the model with torch.compile significantly reduces Python overhead and optimizes kernel fusion, resulting in a 2.3x speedup. - Let's reproduce GPT-2 (124M)

* *** Torch.Compile:* Compiling the model with torch.compile significantly reduces Python overhead and optimizes kernel fusion, resulting in a 2.3x speedup.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
01:48:15 - 02:00:18
-  ⚡ Torch.Compile for Model Optimization- Introduction to torch.Compile as a compiler for neural networks in PyTorch.- Explaining the reduction of Python overhead and GPU read-writes for faster computation.- Demonstrating significant speed improvements with torch.Compile, achieving about 2.3x faster performance with a single line of code. - Let's reproduce GPT-2 (124M)

- ⚡ Torch.Compile for Model Optimization- Introduction to torch.Compile as a compiler for neural networks in PyTorch.- Explaining the reduction of Python overhead and GPU read-writes for faster computation.- Demonstrating significant speed improvements with torch.Compile, achieving about 2.3x faster performance with a single line of code.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:48:29 - 02:00:26
Torch compile optimizes neural net operations efficiently - Let's reproduce GPT-2 (124M)

Torch compile optimizes neural net operations efficiently

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:49:59 - 01:53:48
"dispatch the kernel"??? - Let's reproduce GPT-2 (124M)

"dispatch the kernel"???

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
01:51:59 - 02:01:31
Optimizing round trips to GPU memory for faster computation - Let's reproduce GPT-2 (124M)

Optimizing round trips to GPU memory for faster computation

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:53:48 - 01:55:38
GPU chip architecture overview - Let's reproduce GPT-2 (124M)

GPU chip architecture overview

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:55:38 - 01:59:29
hours of video on this topic"Me: Please sign me up :) - Let's reproduce GPT-2 (124M)

hours of video on this topic"Me: Please sign me up :)

Let's reproduce GPT-2 (124M)
2024年06月10日  @SrikarDurgi 様 
01:55:55 - 04:01:26
yes Andrej we need that 2 hour neural net Hardware specific video 🗣🗣🗣 - Let's reproduce GPT-2 (124M)

yes Andrej we need that 2 hour neural net Hardware specific video 🗣🗣🗣

Let's reproduce GPT-2 (124M)
2024年06月10日  @debdeepsanyal9030 様 
01:55:59 - 04:01:26
Torch compilation utilizes kernel Fusion for speed optimization - Let's reproduce GPT-2 (124M)

Torch compilation utilizes kernel Fusion for speed optimization

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
01:59:29 - 02:01:24
flash attention, 96ms - Let's reproduce GPT-2 (124M)

flash attention, 96ms

Let's reproduce GPT-2 (124M)
2024年06月10日 
02:00:18 - 02:06:54
* *** Flash Attention:* Replacing the default attention implementation with Flash Attention, a specialized kernel fusion algorithm, yields another 27% speedup. - Let's reproduce GPT-2 (124M)

* *** Flash Attention:* Replacing the default attention implementation with Flash Attention, a specialized kernel fusion algorithm, yields another 27% speedup.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
02:00:18 - 02:06:54
-  🧠 Flash Attention Optimization- Flash attention is a kernel fusion algorithm that significantly speeds up attention mechanisms.- Achieves faster computation by avoiding materializing large attention matrices.- Utilizes an online softmax trick to incrementally evaluate softmax without storing all inputs. - Let's reproduce GPT-2 (124M)

- 🧠 Flash Attention Optimization- Flash attention is a kernel fusion algorithm that significantly speeds up attention mechanisms.- Achieves faster computation by avoiding materializing large attention matrices.- Utilizes an online softmax trick to incrementally evaluate softmax without storing all inputs.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:00:26 - 02:06:54
Flash attention algorithm reduces memory usage and improves computation speed significantly. - Let's reproduce GPT-2 (124M)

Flash attention algorithm reduces memory usage and improves computation speed significantly.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:01:24 - 02:05:15
FlashAttention -> more flops does not mean slower - Let's reproduce GPT-2 (124M)

FlashAttention -> more flops does not mean slower

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
02:01:31 - 02:10:09
Using Flash attention in PyTorch for faster runtime. - Let's reproduce GPT-2 (124M)

Using Flash attention in PyTorch for faster runtime.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:05:15 - 02:07:23
nice/ugly numbers. vocab size 50257 → 50304, 93ms - Let's reproduce GPT-2 (124M)

nice/ugly numbers. vocab size 50257 → 50304, 93ms

Let's reproduce GPT-2 (124M)
2024年06月10日 
02:06:54 - 02:14:55
* *** Nice vs. Ugly Numbers:* Optimizing vocabulary size to a power of two (50304) for better kernel utilization surprisingly provides a 4% speedup. - Let's reproduce GPT-2 (124M)

* *** Nice vs. Ugly Numbers:* Optimizing vocabulary size to a power of two (50304) for better kernel utilization surprisingly provides a 4% speedup.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
02:06:54 - 02:14:55
-  🧮 Optimization with Nice Numbers- Identifies "nice" numbers (powers of two) as optimal for computations in CUDA.- Adjusts vocabulary size to a nice number to improve computation efficiency.- Padding inputs to align with block sizes in CUDA can lead to significant performance gains. - Let's reproduce GPT-2 (124M)

- 🧮 Optimization with Nice Numbers- Identifies "nice" numbers (powers of two) as optimal for computations in CUDA.- Adjusts vocabulary size to a nice number to improve computation efficiency.- Padding inputs to align with block sizes in CUDA can lead to significant performance gains.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:06:54 - 02:15:18
Prefer using powers of two in code for neural networks and CUDA. - Let's reproduce GPT-2 (124M)

Prefer using powers of two in code for neural networks and CUDA.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:07:23 - 02:11:14
Add more tokens the model actually trains faster - Let's reproduce GPT-2 (124M)

Add more tokens the model actually trains faster

Let's reproduce GPT-2 (124M)
2024年06月10日  @huikangtong9732 様 
02:10:09 - 04:01:26
Improved GPT-2 performance by fixing token index issue - Let's reproduce GPT-2 (124M)

Improved GPT-2 performance by fixing token index issue

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:11:14 - 02:13:04
Padding inputs for efficiency improvement - Let's reproduce GPT-2 (124M)

Padding inputs for efficiency improvement

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:13:04 - 02:16:50
SECTION 3: hyperpamaters, AdamW, gradient clipping - Let's reproduce GPT-2 (124M)

SECTION 3: hyperpamaters, AdamW, gradient clipping

Let's reproduce GPT-2 (124M)
2024年06月10日 
02:14:55 - 02:21:06
* *** Hyperparameters and AdamW:* The video adopts hyperparameters from the GPT-3 paper, including AdamW optimizer settings and gradient clipping. - Let's reproduce GPT-2 (124M)

* *** Hyperparameters and AdamW:* The video adopts hyperparameters from the GPT-3 paper, including AdamW optimizer settings and gradient clipping.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
02:14:55 - 02:21:06
-  🔍 Hyperparameter Tuning and Algorithmic Improvements- Discusses the importance of hyperparameter tuning based on the GPT-3 paper.- Implements gradient norm clipping to prevent model instability during optimization.- Monitoring the gradient norm helps detect training instabilities and adjust optimization strategies. - Let's reproduce GPT-2 (124M)

- 🔍 Hyperparameter Tuning and Algorithmic Improvements- Discusses the importance of hyperparameter tuning based on the GPT-3 paper.- Implements gradient norm clipping to prevent model instability during optimization.- Monitoring the gradient norm helps detect training instabilities and adjust optimization strategies.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:15:18 - 04:01:26
Setting hyperparameters for training GPT-3 - Let's reproduce GPT-2 (124M)

Setting hyperparameters for training GPT-3

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:16:50 - 02:18:48
Monitoring gradient norm is crucial for stability - Let's reproduce GPT-2 (124M)

Monitoring gradient norm is crucial for stability

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:18:48 - 02:22:39
-  🎓 Implementing Learning Rate Scheduler and Weight Decay- Understanding the details of the learning rate scheduler and weight decay implementation:- Learning rate scheduler: Cosine decay with warm-up period and decay to 10% over a specified horizon.- Weight decay: Used for regularization, typically applied to embedding and weight matrices. - Let's reproduce GPT-2 (124M)

- 🎓 Implementing Learning Rate Scheduler and Weight Decay- Understanding the details of the learning rate scheduler and weight decay implementation:- Learning rate scheduler: Cosine decay with warm-up period and decay to 10% over a specified horizon.- Weight decay: Used for regularization, typically applied to embedding and weight matrices.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:19:44 - 02:26:26
learning rate scheduler: warmup + cosine decay - Let's reproduce GPT-2 (124M)

learning rate scheduler: warmup + cosine decay

Let's reproduce GPT-2 (124M)
2024年06月10日 
02:21:06 - 02:26:21
* *** Learning Rate Scheduler:* A cosine decay learning rate schedule with warmup is implemented, following the GPT-3 paper. - Let's reproduce GPT-2 (124M)

* *** Learning Rate Scheduler:* A cosine decay learning rate schedule with warmup is implemented, following the GPT-3 paper.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
02:21:06 - 02:26:21
Setting learning rate in GPT-2 (124M) - Let's reproduce GPT-2 (124M)

Setting learning rate in GPT-2 (124M)

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:22:39 - 02:24:32
Implementing a learning rate schedule for training GPT-2 - Let's reproduce GPT-2 (124M)

Implementing a learning rate schedule for training GPT-2

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:24:32 - 02:28:14
batch size schedule, weight decay, FusedAdamW, 90ms - Let's reproduce GPT-2 (124M)

batch size schedule, weight decay, FusedAdamW, 90ms

Let's reproduce GPT-2 (124M)
2024年06月10日 
02:26:21 - 02:34:09
* *** Batch Size, Weight Decay, FusedAdamW:* The video discusses batch size scheduling (which is ultimately skipped), implements weight decay for regularization, and utilizes the fused implementation of AdamW for further speed improvements. - Let's reproduce GPT-2 (124M)

* *** Batch Size, Weight Decay, FusedAdamW:* The video discusses batch size scheduling (which is ultimately skipped), implements weight decay for regularization, and utilizes the fused implementation of AdamW for further speed improvements.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
02:26:21 - 02:34:09
-  📊 Batch Size Increase and Data Sampling Techniques- Explanation on gradual batch size increase and data sampling methods:- Gradual batch size increase: Linear ramp-up from small to large batch sizes, aiming for system speed improvement.- Data sampling without replacement: Exhausting a pool of data without reusing sequences until an epoch boundary is reached. - Let's reproduce GPT-2 (124M)

- 📊 Batch Size Increase and Data Sampling Techniques- Explanation on gradual batch size increase and data sampling methods:- Gradual batch size increase: Linear ramp-up from small to large batch sizes, aiming for system speed improvement.- Data sampling without replacement: Exhausting a pool of data without reusing sequences until an epoch boundary is reached.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:26:26 - 02:29:01
Data are sampled without replacement during training. - Let's reproduce GPT-2 (124M)

Data are sampled without replacement during training.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:28:14 - 02:30:10
-  🧮 Weight Decay Implementation and Optimizer Configuration- Details on weight decay implementation and optimizer configuration:- Weight decay: Applied for regularization, particularly to embeddings and weight matrices.- Optimizer configuration: Adjusting parameters for optimal training performance, including weight decay settings. - Let's reproduce GPT-2 (124M)

- 🧮 Weight Decay Implementation and Optimizer Configuration- Details on weight decay implementation and optimizer configuration:- Weight decay: Applied for regularization, particularly to embeddings and weight matrices.- Optimizer configuration: Adjusting parameters for optimal training performance, including weight decay settings.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:29:01 - 02:37:07
Weight decay parameters are split into those that should be weight decayed and those that should not be weight decayed. - Let's reproduce GPT-2 (124M)

Weight decay parameters are split into those that should be weight decayed and those that should not be weight decayed.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:30:10 - 02:33:55
Weight decay is applied to two-dimensional parameters. - Let's reproduce GPT-2 (124M)

Weight decay is applied to two-dimensional parameters.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:33:55 - 02:35:53
gradient accumulation - Let's reproduce GPT-2 (124M)

gradient accumulation

Let's reproduce GPT-2 (124M)
2024年06月10日 
02:34:09 - 02:46:52
* *** Gradient Accumulation:* Gradient accumulation is implemented to simulate larger batch sizes (0.5 million tokens) on limited GPU memory. - Let's reproduce GPT-2 (124M)

* *** Gradient Accumulation:* Gradient accumulation is implemented to simulate larger batch sizes (0.5 million tokens) on limited GPU memory.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
02:34:09 - 02:46:52
Using gradient accumulation to simulate a large batch size - Let's reproduce GPT-2 (124M)

Using gradient accumulation to simulate a large batch size

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:35:53 - 02:39:54
-  🔄 Gradient Accumulation for Simulating Large Batch Sizes- Implementation of gradient accumulation technique to simulate large batch sizes:- Total batch size setting: Defines the desired batch size, which may exceed GPU capacity.- Micro batch size and gradient accumulation: Processing multiple micro-batches and accumulating gradients before updating the model. - Let's reproduce GPT-2 (124M)

- 🔄 Gradient Accumulation for Simulating Large Batch Sizes- Implementation of gradient accumulation technique to simulate large batch sizes:- Total batch size setting: Defines the desired batch size, which may exceed GPU capacity.- Micro batch size and gradient accumulation: Processing multiple micro-batches and accumulating gradients before updating the model.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:37:07 - 02:39:12
-  🧠 Understanding Gradient Accumulation- Explains the concept of gradient accumulation.- Demonstrates the difference between traditional batch processing and gradient accumulation.- Emphasizes the importance of normalizing gradients to ensure consistency. - Let's reproduce GPT-2 (124M)

- 🧠 Understanding Gradient Accumulation- Explains the concept of gradient accumulation.- Demonstrates the difference between traditional batch processing and gradient accumulation.- Emphasizes the importance of normalizing gradients to ensure consistency.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:39:12 - 02:47:00
Demonstration of simple neural network implementation with mean squared loss - Let's reproduce GPT-2 (124M)

Demonstration of simple neural network implementation with mean squared loss

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:39:54 - 02:41:54
Gradients do not match due to loss normalization issue - Let's reproduce GPT-2 (124M)

Gradients do not match due to loss normalization issue

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:41:54 - 02:45:49
Optimizing model training with gradient accumulation and distributed data parallelism. - Let's reproduce GPT-2 (124M)

Optimizing model training with gradient accumulation and distributed data parallelism.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:45:49 - 02:47:41
distributed data parallel (DDP) - Let's reproduce GPT-2 (124M)

distributed data parallel (DDP)

Let's reproduce GPT-2 (124M)
2024年06月10日 
02:46:52 - 03:10:21
* *** Distributed Data Parallel (DDP):* The training is parallelized across 8 GPUs using PyTorch DDP, achieving a throughput of 1.5 million tokens per second. - Let's reproduce GPT-2 (124M)

* *** Distributed Data Parallel (DDP):* The training is parallelized across 8 GPUs using PyTorch DDP, achieving a throughput of 1.5 million tokens per second.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
02:46:52 - 03:10:21
-  🔧 Implementing Distributed Data Parallelism- Introduces the concept of distributed data parallelism for utilizing multiple GPUs.- Explains the difference between legacy data parallelism and distributed data parallelism.- Describes how distributed data parallelism works and its benefits in training neural networks. - Let's reproduce GPT-2 (124M)

- 🔧 Implementing Distributed Data Parallelism- Introduces the concept of distributed data parallelism for utilizing multiple GPUs.- Explains the difference between legacy data parallelism and distributed data parallelism.- Describes how distributed data parallelism works and its benefits in training neural networks.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:47:00 - 02:57:01
Collaborative processing with multiple GPUs - Let's reproduce GPT-2 (124M)

Collaborative processing with multiple GPUs

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:47:41 - 02:51:32
Running with TorRun involves eight parallel processes with different ranks. - Let's reproduce GPT-2 (124M)

Running with TorRun involves eight parallel processes with different ranks.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:51:32 - 02:53:39
Introduction to GPU calculations in GPT-2 (124M) - Let's reproduce GPT-2 (124M)

Introduction to GPU calculations in GPT-2 (124M)

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:53:39 - 02:57:43
-  🔄 Adapting Data Loading for Multi-Process Training- Adjusts data loading process to accommodate multiple processes.- Demonstrates how to assign different chunks of data to each process.- Ensures that each process works on a unique part of the dataset to maximize efficiency. - Let's reproduce GPT-2 (124M)

- 🔄 Adapting Data Loading for Multi-Process Training- Adjusts data loading process to accommodate multiple processes.- Demonstrates how to assign different chunks of data to each process.- Ensures that each process works on a unique part of the dataset to maximize efficiency.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:57:01 - 02:59:17
Initialization of GPT-2 model training process - Let's reproduce GPT-2 (124M)

Initialization of GPT-2 model training process

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:57:43 - 02:59:44
-  🧩 Model Construction and Distributed Data Parallel (DDP)- Explanation of constructing a model for distributed training.- Wrapping the model into a DistributedDataParallel (DDP) container.- Understanding the behavior of DDP in forward and backward passes. - Let's reproduce GPT-2 (124M)

- 🧩 Model Construction and Distributed Data Parallel (DDP)- Explanation of constructing a model for distributed training.- Wrapping the model into a DistributedDataParallel (DDP) container.- Understanding the behavior of DDP in forward and backward passes.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:59:17 - 03:02:15
Wrapping the model into the Distributed Data Parallel container is important for constructing the M model. - Let's reproduce GPT-2 (124M)

Wrapping the model into the Distributed Data Parallel container is important for constructing the M model.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
02:59:44 - 03:03:37
-  🔄 Synchronization of Gradients in DDP- Discusses the synchronization of gradients in the DistributedDataParallel (DDP) setting.- Explanation of optimizing gradient synchronization to improve efficiency.- Implementation details for synchronizing gradients in DDP. - Let's reproduce GPT-2 (124M)

- 🔄 Synchronization of Gradients in DDP- Discusses the synchronization of gradients in the DistributedDataParallel (DDP) setting.- Explanation of optimizing gradient synchronization to improve efficiency.- Implementation details for synchronizing gradients in DDP.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:02:15 - 03:05:22
Avoiding context managers and code duplication by directly toggling the variable. - Let's reproduce GPT-2 (124M)

Avoiding context managers and code duplication by directly toggling the variable.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:03:37 - 03:05:42
-  📉 Loss Averaging and Evaluation in DDP- Addressing the issue of loss averaging in the DDP setting.- Modifying code to compute and print the average loss across all processes.- Ensuring proper scaling of the number of tokens processed in the evaluation phase. - Let's reproduce GPT-2 (124M)

- 📉 Loss Averaging and Evaluation in DDP- Addressing the issue of loss averaging in the DDP setting.- Modifying code to compute and print the average loss across all processes.- Ensuring proper scaling of the number of tokens processed in the evaluation phase.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:05:22 - 03:10:23
Printing loss over all processes and averaging it - Let's reproduce GPT-2 (124M)

Printing loss over all processes and averaging it

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:05:42 - 03:09:39
GPT-2 (124M) reproduction process summary - Let's reproduce GPT-2 (124M)

GPT-2 (124M) reproduction process summary

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:09:39 - 03:11:30
datasets used in GPT-2, GPT-3, FineWeb (EDU) - Let's reproduce GPT-2 (124M)

datasets used in GPT-2, GPT-3, FineWeb (EDU)

Let's reproduce GPT-2 (124M)
2024年06月10日 
03:10:21 - 03:23:10
* *** Dataset Selection:* The video discusses various datasets used for training large language models, ultimately choosing the FineWeb EDU dataset (10 billion token sample). - Let's reproduce GPT-2 (124M)

* *** Dataset Selection:* The video discusses various datasets used for training large language models, ultimately choosing the FineWeb EDU dataset (10 billion token sample).

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
03:10:21 - 03:23:10
-  📚 Training Data Comparison: GPT-2 vs. GPT-3- Comparison of training datasets used in GPT-2 and GPT-3.- Description of web text and Common Crawl datasets utilized.- Introduction of alternative datasets like Red Pajamas, C4, Fine Web, and Fine Web Edu. - Let's reproduce GPT-2 (124M)

- 📚 Training Data Comparison: GPT-2 vs. GPT-3- Comparison of training datasets used in GPT-2 and GPT-3.- Description of web text and Common Crawl datasets utilized.- Introduction of alternative datasets like Red Pajamas, C4, Fine Web, and Fine Web Edu.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:10:23 - 03:14:15
Training data mixtures are carefully curated and diverse. - Let's reproduce GPT-2 (124M)

Training data mixtures are carefully curated and diverse.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:11:30 - 03:15:22
-  📦 Preprocessing and Training Setup for Fine Web Edu- Overview of the preprocessing steps for the Fine Web Edu dataset.- Description of tokenization process and data shard creation.- Configuration adjustments in the data loader for using the Fine Web Edu dataset. - Let's reproduce GPT-2 (124M)

- 📦 Preprocessing and Training Setup for Fine Web Edu- Overview of the preprocessing steps for the Fine Web Edu dataset.- Description of tokenization process and data shard creation.- Configuration adjustments in the data loader for using the Fine Web Edu dataset.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:14:15 - 03:18:42
Tokenizing and processing large datasets for GPT-2 model training. - Let's reproduce GPT-2 (124M)

Tokenizing and processing large datasets for GPT-2 model training.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:15:22 - 03:17:22
Sharding data for easier disk management - Let's reproduce GPT-2 (124M)

Sharding data for easier disk management

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:17:22 - 03:21:39
-  🧩 Script adjustments for GPT-3 replication- Adjusted data loader for processing multiple shards.- Set token processing rate and warm-up steps to match GPT-3 parameters.- Increased batch size optimization for faster training. - Let's reproduce GPT-2 (124M)

- 🧩 Script adjustments for GPT-3 replication- Adjusted data loader for processing multiple shards.- Set token processing rate and warm-up steps to match GPT-3 parameters.- Increased batch size optimization for faster training.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:18:42 - 03:21:29
-  📊 Implementing validation evaluation- Added validation evaluation logic to the training loop.- Introduced periodic validation loss calculation.- Prepared for model comparison with GPT-2 124M. - Let's reproduce GPT-2 (124M)

- 📊 Implementing validation evaluation- Added validation evaluation logic to the training loop.- Introduced periodic validation loss calculation.- Prepared for model comparison with GPT-2 124M.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:21:29 - 03:26:09
Optimizing model training process for efficiency and quality. - Let's reproduce GPT-2 (124M)

Optimizing model training process for efficiency and quality.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:21:39 - 03:23:39
validation data split, validation loss, sampling revive - Let's reproduce GPT-2 (124M)

validation data split, validation loss, sampling revive

Let's reproduce GPT-2 (124M)
2024年06月10日 
03:23:10 - 03:28:23
* *** Validation Split:* A validation split is introduced to monitor overfitting and compare performance to the pre-trained GPT-2 model. - Let's reproduce GPT-2 (124M)

* *** Validation Split:* A validation split is introduced to monitor overfitting and compare performance to the pre-trained GPT-2 model.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
03:23:10 - 03:28:23
Evaluating GPT-2 (124M) model performance - Let's reproduce GPT-2 (124M)

Evaluating GPT-2 (124M) model performance

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:23:39 - 03:27:18
-  🔄 Reorganizing sampling code- Moved sampling code closer to the main training loop.- Implemented a separate RNG for sampling to avoid impacting training RNG.- Addressed performance slowdown due to disabled Torch compile. - Let's reproduce GPT-2 (124M)

- 🔄 Reorganizing sampling code- Moved sampling code closer to the main training loop.- Implemented a separate RNG for sampling to avoid impacting training RNG.- Addressed performance slowdown due to disabled Torch compile.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:26:09 - 03:28:26
Troubleshooting torch compile issue - Let's reproduce GPT-2 (124M)

Troubleshooting torch compile issue

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:27:18 - 03:29:01
evaluation: HellaSwag, starting the run - Let's reproduce GPT-2 (124M)

evaluation: HellaSwag, starting the run

Let's reproduce GPT-2 (124M)
2024年06月10日 
03:28:23 - 03:43:05
* *** HellaSwag Evaluation:* The HellaSwag benchmark is implemented to evaluate the model's common sense reasoning abilities. - Let's reproduce GPT-2 (124M)

* *** HellaSwag Evaluation:* The HellaSwag benchmark is implemented to evaluate the model's common sense reasoning abilities.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
03:28:23 - 03:43:05
-  📈 Introducing H-SWAG evaluation- Described H-SWAG evaluation methodology and dataset.- Highlighted its role as a smooth evaluation metric.- Discussed implementation details for incorporating H-SWAG into the training script. - Let's reproduce GPT-2 (124M)

- 📈 Introducing H-SWAG evaluation- Described H-SWAG evaluation methodology and dataset.- Highlighted its role as a smooth evaluation metric.- Discussed implementation details for incorporating H-SWAG into the training script.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:28:26 - 03:38:22
Language models trained with world knowledge outperform those with less training. - Let's reproduce GPT-2 (124M)

Language models trained with world knowledge outperform those with less training.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:29:01 - 03:33:01
Construct batches of tokens with shared context and options for prediction - Let's reproduce GPT-2 (124M)

Construct batches of tokens with shared context and options for prediction

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:33:01 - 03:35:02
Model's inability to view all options at once - Let's reproduce GPT-2 (124M)

Model's inability to view all options at once

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:35:02 - 03:38:55
-  🔧 Adjustments to Training Script and Logging- Changes made to the training script to enable periodic evaluation and tracking of model performance over time.- Disabling torch compile due to issues with evaluation and sampling code.- Creation of a log directory to record training and validation losses, as well as H swag accuracies. - Let's reproduce GPT-2 (124M)

- 🔧 Adjustments to Training Script and Logging- Changes made to the training script to enable periodic evaluation and tracking of model performance over time.- Disabling torch compile due to issues with evaluation and sampling code.- Creation of a log directory to record training and validation losses, as well as H swag accuracies.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:38:22 - 03:40:01
Running without torch compile affects code performance - Let's reproduce GPT-2 (124M)

Running without torch compile affects code performance

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:38:55 - 03:40:48
-  📊 Evaluation of H Swag and Model Sampling- Introduction of code for evaluating H swag periodically during training.- Utilization of GPU collaboration for H swag evaluation.- Sampling from the model every 250th iteration for monitoring model progress. - Let's reproduce GPT-2 (124M)

- 📊 Evaluation of H Swag and Model Sampling- Introduction of code for evaluating H swag periodically during training.- Utilization of GPU collaboration for H swag evaluation.- Sampling from the model every 250th iteration for monitoring model progress.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:40:01 - 03:43:06
Model training process overview - Let's reproduce GPT-2 (124M)

Model training process overview

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:40:48 - 03:45:03
SECTION 4: results in the morning! GPT-2, GPT-3 repro - Let's reproduce GPT-2 (124M)

SECTION 4: results in the morning! GPT-2, GPT-3 repro

Let's reproduce GPT-2 (124M)
2024年06月10日 
03:43:05 - 03:56:21
* *** Results:* After training for one epoch (10 billion tokens), the model surpasses the GPT-2 (124M) performance on HellaSwag, achieving comparable results with 10x fewer training tokens. - Let's reproduce GPT-2 (124M)

* *** Results:* After training for one epoch (10 billion tokens), the model surpasses the GPT-2 (124M) performance on HellaSwag, achieving comparable results with 10x fewer training tokens.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
03:43:05 - 03:48:41
-  📈 Training Progress Visualization- Visualization of training progress using Matplotlib.- Analysis of loss curves and model performance.- Comparison of model performance against GPT-2 and GPT-3 accuracy metrics. - Let's reproduce GPT-2 (124M)

- 📈 Training Progress Visualization- Visualization of training progress using Matplotlib.- Analysis of loss curves and model performance.- Comparison of model performance against GPT-2 and GPT-3 accuracy metrics.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:43:06 - 03:46:23
GPT-2 (124M) trained on 10 billion tokens matching or surpassing accuracy of GPT-2 (100B) trained on significantly fewer tokens - Let's reproduce GPT-2 (124M)

GPT-2 (124M) trained on 10 billion tokens matching or surpassing accuracy of GPT-2 (100B) trained on significantly fewer tokens

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:45:03 - 03:46:58
-  🧠 Reflections on Training Results and Data Quality- Discussion on the implications of achieving GPT-3 level accuracy with fewer tokens.- Consideration of factors influencing model performance, such as data distribution and dataset quality.- Reflections on potential improvements in data preprocessing and model hyperparameters. - Let's reproduce GPT-2 (124M)

- 🧠 Reflections on Training Results and Data Quality- Discussion on the implications of achieving GPT-3 level accuracy with fewer tokens.- Consideration of factors influencing model performance, such as data distribution and dataset quality.- Reflections on potential improvements in data preprocessing and model hyperparameters.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:46:23 - 03:49:05
Issue with data shuffling affecting model training - Let's reproduce GPT-2 (124M)

Issue with data shuffling affecting model training

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:46:58 - 03:50:41
* *** Overnight Run:* Training for four epochs (40 billion tokens) further improves HellaSwag accuracy, approaching the GPT-3 (124M) performance. - Let's reproduce GPT-2 (124M)

* *** Overnight Run:* Training for four epochs (40 billion tokens) further improves HellaSwag accuracy, approaching the GPT-3 (124M) performance.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
03:48:41 - 03:56:21
-  ⚙ Optimization Techniques and Training Efficiency- Examination of optimization issues and periodicity in data loading.- Discussion on the impact of learning rate adjustments on training efficiency.- Consideration of techniques to improve data shuffling and reduce data dependency. - Let's reproduce GPT-2 (124M)

- ⚙ Optimization Techniques and Training Efficiency- Examination of optimization issues and periodicity in data loading.- Discussion on the impact of learning rate adjustments on training efficiency.- Consideration of techniques to improve data shuffling and reduce data dependency.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:49:05 - 03:52:03
Improving data shuffling and model efficiency. - Let's reproduce GPT-2 (124M)

Improving data shuffling and model efficiency.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:50:41 - 03:52:31
-  🛠 Model Fine-Tuning and Future Directions- Overview of fine-tuning process for conversational AI applications.- Introduction of model checkpointing for resuming optimization and model evaluation.- Discussion on alternative evaluation methods and comparison with GPT-2 and GPT-3. - Let's reproduce GPT-2 (124M)

- 🛠 Model Fine-Tuning and Future Directions- Overview of fine-tuning process for conversational AI applications.- Introduction of model checkpointing for resuming optimization and model evaluation.- Discussion on alternative evaluation methods and comparison with GPT-2 and GPT-3.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:52:03 - 04:01:26
Training model to mimic GPT-3 with sequence length adjustment - Let's reproduce GPT-2 (124M)

Training model to mimic GPT-3 with sequence length adjustment

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:52:31 - 03:56:15
Comparison between nanog GPT in PyTorch and llm Doc and lm. C CUDA implementation - Let's reproduce GPT-2 (124M)

Comparison between nanog GPT in PyTorch and llm Doc and lm. C CUDA implementation

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:56:15 - 03:58:19
shoutout to llm.c, equivalent but faster code in raw C/CUDA - Let's reproduce GPT-2 (124M)

shoutout to llm.c, equivalent but faster code in raw C/CUDA

Let's reproduce GPT-2 (124M)
2024年06月10日 
03:56:21 - 03:59:39
* *** Shoutout to llm.c:* The video showcases "llm.c," a faster C/CUDA implementation of GPT-2/3 training. - Let's reproduce GPT-2 (124M)

* *** Shoutout to llm.c:* The video showcases "llm.c," a faster C/CUDA implementation of GPT-2/3 training.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
03:56:21 - 03:59:39
Comparing PyTorch and lm.C performance for training GPT-2 and GPT-3. - Let's reproduce GPT-2 (124M)

Comparing PyTorch and lm.C performance for training GPT-2 and GPT-3.

Let's reproduce GPT-2 (124M)
2024年06月10日  @Gaurav-pq2ug 様 
03:58:19 - 04:01:26
summary, phew, build-nanogpt github repo - Let's reproduce GPT-2 (124M)

summary, phew, build-nanogpt github repo

Let's reproduce GPT-2 (124M)
2024年06月10日 
03:59:39 - 04:01:26
* *** Summary:* A brief summary of the achievements and remaining challenges. - Let's reproduce GPT-2 (124M)

* *** Summary:* A brief summary of the achievements and remaining challenges.

Let's reproduce GPT-2 (124M)
2024年06月10日  @wolpumba4099 様 
03:59:39 - 04:01:26

Andrej Karpathy

※本サイトに掲載されているチャンネル情報や動画情報はYouTube公式のAPIを使って取得・表示しています。動画はYouTube公式の動画プレイヤーで再生されるため、再生数・収益などはすべて元動画に還元されます。

Timetable

動画タイムテーブル

タイムテーブルが見つかりませんでした。